
It follows from the above results that when thermomechanical coupling is taken into account a viscoelas-  
tic rod behaves as a nonlinear mechanical system with a soft type of characterist ic.  
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NOTATION 

is the coordinate along the rod; 
is the length of the rod; 
are the constants of the material;  
is the temperature;  
is the complex amplitude of the harmonic s tress;  
is the density; 
is the thermal conductivity; 
is the angular frequency; 
are the dimensionless coordinate, temperature,  and s t ress  components; 
is the dimensionless loading parameter .  
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CALCULATION OF KINEMATIC COAGULATION OF AN 

AEROSOL IN A VARIABLE-SPEED GAS STREAM 

I. B. Palatnik and A. K. A zhibekov UDC 532.529.6 

A method is suggested for calculating the kinematic coagulation of drops in a variable-speed gas 
s tream when they are broken up by the gas stream. The results of the calculation are compared 
with test data. 

The problem of coagulation, part icularly of colloids, under the action of Brownian motion was f i rs t  
analyzed by Smolukhovskii [1] for the case of an isodisperse distribution. The equations for the general case 
of coagulation with a continuous polydisperse distribution were analyzed by Mfiller [2] and Tunitskii [3]. 

Two approaches to the calculation of particle coagulation are known (see [4], for example). The f i rs t  
is based on the study of the evolution of the drop sizes of the fractions under consideration. This method, be- 
cause of a certain analogywithclassical  hydrodynamics, received the name of the Lagrange method. The 
second is based on the determination of the numbers of particles of fixed sizes and is named the Euler method. 

Henceforth we will analyze the problem of coagulation of apolydisperse system of part icles by the Euler 
method. 

When the particle spectrum is assigned in the form of a varying mass distribution function 

dN - -  f (m, "~) din, (1) 

Translated from Inzhenerno-Fizicheskii  Zhurnal, Vol. 35, No. 4, pp. 698-704, October, 1978. Original 
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where  dN is the number of par t i c les  in the in terval  dm, f(m, T) is the computed density dis tr ibut ion,  and T is 
the t ime,  the t ime variat ion of the function f is descr ibed ,  according to [2, 3], by the equation 

df (m, T) ~ = l i  (m, t) - -  12 (m, t), (2) 
dt 

where  

1 tn 
I i (m, .c) = =- I K (m', m--re', .c) f (m', "~) f (m--- m', t) din'. 

2 ~  
(2a) 

Is (m, "~) = ~ (m, "0 J" K (m*, m, t) [ (m*, "r) din*. (2b) 
0 

In Eqs.  (2)-(2b), K is the coefficient of pa r t i c l e  coagulation, de te rmined  by the mechanism of o c c u r -  
rence  of the p rocess ;  Ii and 12 a re  in tegrals  express ing  the number  of pa r t i c les  of mass  m forming in the col l i -  
sion of par t i c les  having masses  m'  and m - m'  and the number  of par t i c les  of mass  m los t  upon the i r  col l i -  
sions with any par t i c les  of mass  m*, coalescence,  and leavingthe ca tegory  of pa r t i c l e s  of the given mass .  

Using the calculating par t ic le  size distr ibution function 

dN --- f (8, t )  di~ (3) 

the coagulation equation for  the function f(5, r) was obtained in [5] in a fo rm analogous to (2), with the d i f -  
fe rence  that 

5 I ~ / - ~  , 

I, (8, ,) = .[ K (8, ~ 6 ~ )  3, v) f (8', T) f (~/z~3---~-~,)3, T) ~0 (6, ~}') dS", (2c) 
0 

[~ (~, ~ )=  f(~, ~)f/i(6*, 6, t)f (~*, t)d~*. (2d) 
0 

The function 

r (6, 6') = l/[1 -- (6'/6)3] 2/3 (4) 

was introduced into (2c). Its introduction is connected with the fact  that ,  because of the nonlinear identity 53 = 
(5') 3 + ( ~ 3 - ( 5 ' ) ~ 3 ,  the widths of the in tervals  in (2c) for  par t i c les  with s izes  5, 6 ' ,  and ~6~-(6 ' )  ~ prove to be 
unequal to each other  (see [5, 6]). 

F o r  the motion of a coagulating aeroso l  in a va r iab le - speed  gas s t r eam in a channel of var iable  c ross  
section a co r rec t ion  was introduced in [5] allowing for  the fact  that the calculating par t ic le  s ize distr ibution 
densi ty f(6, T) va r i e s  not only due to coagulation but also in connection with the fact  that the veloci t ies  of the 
par t i c les  and the gas not a re  equal to each other .  

Using the continuity equation for  the calculating distr ibution density function for  pa r t i c les  of a given f r a c -  
t ion, we obtain 

f (8, ~0) u (8, ~0) s (to) = f (8, t) u (8, t) s (t) = const, (5) 

where  u and s a re  the pa r t i c l e  veloci ty and the channel c ross  sect ion,  respect ive ly .  

Using (5), the par t ic le  coagulation equation for  the calculating size distr ibution function can be wri t ten 
in the fo rm 

f (8, ~) u (~, n)  s (~o) it  (8, ~o) + ( q,  (8, , ) - / 2  (8, ~) dr)] .  (6) 
u(6,  ~) s(t) o 

As shown in [5], in a number  of cases  Eq. (6) descr ibes  the observed  tes t  data quite sa t is factor i ly .  

But in the general  case ,  such as when the spec t rum of the par t ic le  s ize distr ibution is v e ry  broad and 
the coagulation takes place with considerable  var ia t ion of the veloci ty  and the channel c ross  sect ion,  the p rob -  
lem ufider donsiderati6n rec~uires'a more  rigorou.~ approach,  in our  opiiaion. 
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Fig. I Fig. 2 

Fig. 1. Calculat ion of va r ia t ion  of bulk size dis t r ibut ion den-  
s i ty of the flux of w a t e r  d rops  along a Venturi  tube: 1) bulk 
dis t r ibut ion densi ty  of flux of drops  V (1/sec) by s ize  6 = 6/6 c 
in the throat ;  2) the s ame  at  the end of the Ventur i  tube. 

Fig. 2. Bulk dis t r ibut ion densi ty v (1/m 3) of wa t e r  drops  by 
s ize  6 (initial spec t rum) .  

We introduce a va ry ing  calculat ing dis t r ibut ion function for  the flux of pa r t i c l e s  with s izes  f r o m  6 to 6 + 
d6: 

d e  (6, T) = F (6, ~) d6, (7) 

where  F(6, T) = f(5, T)u(5, T)S(T) is the par t i c le  flux density.  The magnitude of the flux (or the flux density) 
for  pa r t i c l e s  of a given size can v a r y  only through coagulation and does not depend on the va r ia t ion  t n t h e v e l o c -  
t ty and c r o s s  sect ion of the gas s t r e a m .  In this connection, Eq. (2) [when using Eqs. (2c)-(2d) in ca lcu la t -  
ing the p a r t i c l e - s i z e  distr ibution] mus t  be  wr i t t en  in the following f o r m  for  the var ia t ion  of the pa r t i c l e  flux den- 
s i ty ,  in our opinion, in the case  of va r ia t ion  of the veloci ty  and c ro s s  sect ion of the gas s t r e a m :  

dF (8, ~) = u (6, ~) s (r) [It (6, ~) - -  12 (6, r)], 
dr 

where  J1 and J2 a re  de te rmined  by (2c) and (2d). 

By in tegra t ing (8) in the l imi t s  f r o m  T = 0 to T we obtain 

(8, r) = F (8, %) • i u (6, r) s (r) [li (6, ~) - -  12 (6, r)] dr. F 
0 

(9) 

(8) 

(9) 

Convert ing to the calculat ing dis t r ibut ion densi ty  function, a f te r  s imple  t r ans fo rma t ions  we obtain f r o m  

~c (6~ T) U (8~ "~0) S (170) [ I U(6, T) S( "1~ ) 
- -  u (8, r) s (r) f (8, ~o) + .  u (8, r0) s (~0) 

0 

[I,(6, ~)--I2(6, T) d~]] (i o) 

Equation (10) al lows for  the var ia t ion  of the calculat ing par t i c le  dis t r ibut ion densi ty both due to coagula-  
tion and due to the var ia t ion  of the veloci ty  of the gas s t r e a m  and the c ro s s  section.  The physica l  meaning of 
(10) is that  to de t e rmine  the actual  calculat ing pa r t i c l e  concentra t ion densi ty a t  any t ime one reduces  the v a r i a -  
tion in the number  of pa r t i c l e s  due to coagulation (the di f ference I1(6, 1-) - 12 • ( 5 ,  ~') to the initial  conditions of 
flow of the ae roso l  by the f ac to r  u(6, T)S(T)/u(6, ~'0)S(~'0), adds it to the init ial  number  of p a r t i c l e s ,  and then r e -  
duces it  to the conditions of flow at  the t ime T by the fac tor  u(6, I"0)S(T0)/U(6, ~')Sff). 

A r a the r  typical  example  of the s imul taneous  occu r rence  of coagulation and a cons iderable  var ia t ion  in 
the s t r e a m  veloci ty  and c r o s s  sect ion is the flow of an ae roso l  in a Ventur i  tube - a device widely u s e d a t p r e s -  
e nt, p a r t i c u l a r l y  for  the coagulation of dust  pa r t i c l e s  with drops  of a tomized  liquid and dust  collection both 
for  pro tec t ion  of the sur rounding  med ium and for  the r emova l  of valuable  products .  The p r o c e s s  of coagula-  
tion of wa te r  d rops ,  which de t e rmines  the r e s i s t a n c e  of the appara tus  and the hea t  exchange in it [5], as  well  
as  the eff ic iency of the subsequent  iner t ia l  (as a rule) prec ip i ta t ion  of the drops  together  with the t rapped dust ,  
is a lso  v e r y  impor tan t  in this connection. 
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Fig. 3. Comparison of calculated and exper imenta l  values of bulk dis tr ibut ion den-  
si ty of drop flux: 1) calculation by Eq. (10) (spectra  in throat  and at end of Ventur i  
tube); 2) exper iment ;  3) initial spect rum;  4) spec t rum in throat ;  5) spec t rum at  end 
of Ventur i  tube. 

Fig. 4. Cr i te r ion  for  choosing specif ic  wate r  flow ra te  ( l i ter /m 3) and initial  drop 
size 6 m {~m) to allow for  coagulation. 

Equation (10) is a complicated in tegrodif ferent ia l  equation,  and we know of no general  methods for  its 
solution. A f in i te -d i f fe rence  method,  rea l ized  on a computer ,  was used in making p rac t i ca l  calculations.  The 
resu l t s  of a calculation [5] within the l imi ts  of var ia t ion  of the p a r a m e t e r s  of the problem under  considerat ion 
show the stabil i ty and convergence of this method. 

An example of a calculation of the var ia t ion  of the bulk-s ize  distr ibution density of the flux of water  drops 
along a Ventur i  tube is shown in Fig. 1. The specif ic  wa te r  flow ra te  is q = 1 l i t e r /m 3, the model size of the 
bulk size distr ibution density of drops at  the s t a r t  of the Venturi  tube is 5m = 100 ~m, and the cha rac t e r i s t i c  
s ize is 5c = 400 ~m. The geomet r ica l  p a r a m e t e r s  of this device a re  cha rac t e r i s t i c  for  power engineer ing with 
wet ash r ecovery .  

As seen f rom the f igure ,  in the case of a fine enough initial s ize distr ibution of drops ,  when another  im-  
por tant  p r o c e s s ,  breaking up of drops by the gas s t r e am ,  is p rac t ica l ly  absent ,  the i r  significant coagulation is 
observed,  which must  be taken into account. We note (and this is v e ry  important)  that ,  as es t imates  showed, 
the total wate r  flow ra te  is conserved with a sufficient  accuracy  (3%), in our opinion, which indicates the ap-  
plicabil i ty of the calculating method used under  the given conditions. 

In the p resence  of a p rocess  of breakup of drops by the gas s t r e am  owing to the i r  loss  of stabil i ty Eq. (10) 
is of p rac t i ca l  in teres t .  

Tlle basic quantitative relat ionships  of the p roces s  of breakup of drops under  the conditions cha rac t e r i s t i c  
of the atomizing of wate r  in wet ash r e m o v e r s  with Ventur i  tubes in power engineer ing were  obtained in [7-9]. 
The bulk size distr ibution density of the products  of the breakup of a single drop can be descr ibed  by the de-  
pendence 

v (6) = 11.44 ~1.25 exp (-- 5.05 ~.~s), (11) 

where  6 = 5/D 0 (D o is the size of the initial drop which breaks  up). 

We note that ,  as indicated in many investigations (see [10], for  example) ,  in the indicated range of Weber  
numbers  the rea l iza t ion  of the breakup of drops has an i r r e g u l a r  charac te r .  At the lower l imit  only single 
drops b reak  up; then as the Weber  number  grows the f rac t ion of drops of a given size which b reak  up grows,  
reaching 50% at We = 15.5; f inal ly,  as the upper  l imit  is approached,  the f rac t ion of drops  breaking up ap-  
p roaches  100%. A joint analysis  of the data obtained in [7] and [9] showed that the distr ibution of the f rac t ion 
of drops breaking up in the range of 8 -< We -< 23 is sa t i s fac tor i ly  descr ibed  by a normal - law distr ibution func- 
tion: 

W e - - 1 5 , ~  

1S (;) C = g---~ exp - -  dr, (12) 
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where  C is the f rac t ion  of drops  of a given size which b r e a k  up. The s tandard deviation ~ is 2.5. C = 0 at 
We-< 8 a n d C = l  at We-> 23. 

The breakup re la t ionships  obtained were  obtained with the calculation of coagulation by Eq. (10) as fo l -  
lows. If at  some t ime  T the re la t ive  veloci ty  between the gas and the drops  r eaches  such a level  that the p o r -  
tion of drops  down to some size D o a r e  broken up, then the m a s s  of wa t e r  cor responding  to the hatched pa r t  
(Fig. 2a) m u s t  be d is t r ibuted  in the r e s t  of the spec t rum in accordance  with the dependence (11) and (12). This  
leads  to some a r b i t r a r y  dis t r ibut ion (Fig. 2b) which,  s t a r t ing  with this t ime ,  mus t  be taken as the initial d i s -  
t r ibut ion for  subsequent  calculat ions of the coagulation. 

For  an expe r imen ta l  t e s t  of this s y s t e m  for  calculat ing coagulation with al lowance for  the breakup of 
drops  by the gas s t r e a m ,  we made an exper imen ta l  de te rmina t ion  of the t r ans fo rma t ion  of drops  a tomized by 
a centr i fugal  s p r a y e r  when they m o v e d i n a V e n t u r i  tube on a BKZ-160-100F boi ler  (station No. 10) of the Alma~ 
Ata t h e r m o e l e c t r i c  power  plant  Tt~Ts-1 .  The drop spec t rum was de te rmined  exper imenta l ly  by the pu l s e -  
counting method in accordance  with the p rocedu re  p resen ted  in [11]. We note that when the indicated p rocedure  
is used the de tec to r  (thin coaxial  me ta l  needles) r e co rds  the number  of drops  pass ing  pe r  unit  t ime ,  i .e . ,  the 
flux of drops .  These  readings  can be identified with the size dis tr ibut ion of drop concentra t ion only when the 
ve loci t ies  of the drops  and the gas a r e  equal ,  which was  not taken into account in [11]. A s i m i l a r  approach 
to the de te rmina t ion  of the s ize dis t r ibut ion of d rops  is desc r ibed  in [12]. 

The r e su l t s  of a compar i son  of the expe r imen ta l  and calculated de te rmina t ion  of the t r ans fo rma t ion  of 
the spec t rum along a Ventur i  tube a r e  p re sen ted  in Fig. 3. As is seen,  the i r  s a t i s f ac to ry  a g r e e m e n t  occurs .  
In the calculat ion the bulk densi ty dis t r ibut ion of the flux of drops  and de te rmined  in the f o r m  

v (~) = ~-~ 6~v (~, ~:). (13) 
6 

In these  tes t s  and calculat ions it was  d i scove red  that  the g r ea t e s t  change in the drop s p e c t r u m  occurs  in the 
sect ion of gas acce l e ra t ion ,  mainly  owing to the breakup.  In the sect ion of gas dece le ra t ion  (the diffusor  of the 
Venturi  tube) the coagulation and breakup a re  not g rea t  under  the given conditions. 

An es t ima te  of the necess i ty  of allowing for  the coagulation of wa t e r  d rops  is impor tant  in the p rac t i ca l  
use  of the equations p r e sen t ed ,  since mos t  of the compute r  t ime in the calculat ions (up to 80%) goes jus t  to the 
calculat ion of the coagulation. In this connection,  we made a s e r i e s  of calculat ions us ing Eqs.  (9) and (10) in 
o r d e r  to es tab l i sh  the l imi t s  of va r ia t ion  of the wa t e r  flow r a t e s  and the ini t ial  d rop  s izes  for  which one mus t  
allow fo r  coagulat ion when the p a r a m e t e r s  of the Ventur i  tubes a r e  c h a r a c t e r i s t i c  fo r  engineering.  That  
combinat ion of w a t e r  flow ra te  and ini t ia l  d rop  s i zes  a t  which the model  s ize  of the bulk dis t r ibut ion in the 
spec t rum of the drop  flux va r i ed  by  not m o r e  than 2 -5% upon moving f r o m  the th roa t  to the end of the 
di f fusor  of the Ventur i  tube s e rved  as the c r i t e r ion .  

The r e su l t s  of this calculat ion a r e  p re sen ted  in Fig. 4. The region of combinat ions of speci f ic  wa t e r  
flow ra te  and init ial  drop s izes  for which one mus t  allow for  coagulation l ies  below the boundary curve  (hatched 
zone). Above it coagulation is not g rea t  and it  can be neglected in the calculat ions.  As seen f r o m  the f igure ,  
in power  engineer ing ,  where  the speci f ic  w a t e r  flow r a t e s  do not exceed 0.1-0.15 l i t e r / m  3 while the modal  value 
of the initial  drop  dis t r ibut ion l ies  in the range of 300-500 ~m,  coagulat ion can b e i g n o r e d ,  as a rule.  In other  
cases  [13], however ,  when the speci f ic  wa t e r  flow r a t e s  a re  1-2 l i t e r /m  3, al lowance for  the coagulation of 
wa te r  drops  is n e c e s s a r y  (see Fig. 1, for  example) .  
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S I N G U L A R T I E S  O F  D Y N A M I C  P R O C E S S E S  P R O C E E D I N G  

IN D E F O R M A B L E  S O L I D S  W I T H  T H E  F I N I T E  R A T E  O F  

H E A T  P R O P A G A T I O N  T A K E N  I N T O  A C C O U N T  

R .  H .  S h v e t s  a n d  A.  A .  L o p a t ' e v  UDC 536.24.01 

The s ingular i t ies  of dynamic p r o c e s s e s  occur r ing  in deformable  solids at high f requencies  are  
studied on the basis of in t e r re l a t ed  equations of the general ized theory of thermoelas t ic i ty .  

The investigation of the rmoe las t i c  phenomena in solids has recen t ly  often been conducted on the basis of 
a general ized dynamical  theory of the rmoelas t i c i ty  [1-3] with the finite ra te  of heat  propagation in the solid 
taken into account.  In this case the energy  equation is an equation of hyperbol ic  type whose uti l ization for  
small  t imes  in the domain of large  gradients  would afford the opportunity for  a more  accura te  descr ip t ion of 
the t empera tu re  f ields [4] and the t empera tu re  s t r e s s e s  [2]. Exper imenta l  resu l t s  on the dissipation of a heat  
pulse in liquid hel ium at ve ry  low t empera tu re s  are  explained by using the hyperbol ic  equation of heat  conduc- 
tion. 

In this connection, it  is expedient  to study the s ingular i t ies  of the the rmoe las t i e  p r o c e s s e s  proceeding in 
deformable  solids by using the general ized dynamical  theory of thermoelas t ic i ty .  

Le t  us consider  an infinite i so t ropic  space possess ing  a t he rma l  res i s tance .  The the rmoelas t i c  motion 
of the solid can be descr ibed  by the sys t em of equations [3] 

02u 
~Au § 0~ + ~) grad div u - -  (3L q- 2~t) ~ grad ( T - -  To) = p - -  , 0x~ 

• OT o 2 r  [ Oel, O2e~i ~ (1) 
0-7- +Xo ~-~ +v,/-~(+x0 - ~ / ,  

(rij --- ;~eiiSis -[- 2~eis  - -  (3L + 2Ix) a (T-- To) ~t.~, 

where  5ij is the Kronecker  deIta,  A is the Laplace opera tor  71 = (3~ + 2/a)aT0/pc E. 

To simplify the computat ions,  we go over  to the dimensionless  var iab les  

co* )~q-2~ (a* u , 0- -  T--T0 
z~= x z, x~=co*x, ut= 3Z,+2~ ct aTo T ~  ' Ci 

(2) 
o-ls 3L q- 2Ix c~ 

]g~s = (3~, q- 2ix) aTo ' ~' = v'a ~. -q- 21 x ' 15 ---- ~ ' 

in which sys tem (1) becomes  

0211t 
Auiq- )~ + ~ grad div u,--  grad 0= 0x~ (3) 

-Jc- 21 x ~, + 21 x 
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